kubus abcd efgh mempunyai panjang rusuk 2 satuan
1 diketahui kubus abcd. efgh dengan panjang rusuk 6 cm. jarak titik g ke garis bd adalah? a. 4 akar 3 cm b. 4 akar 2 cm c. 3 akar 6 cm d. 2 akar 3 cm e. 2 akar 2 cm 2. diketahui kubus abcd. efgh dengan panjang rusuk 10 - on study-assistant.com
Teksvideo. Di sini ada soal dimensi tiga dimensi tiga nya berbentuk kubus abcd efgh rusuknya √ 2. Perhatikan ada akar2nya rusuknya Sisinya a √ 2 cm yang diminta Jarak titik h ke bidang bdg jadi kita Gambarkan bidang Dedenya terlebih dahulu ya karena ini berupa titik jadi kalau kita perhatikan segitiga sama sisi nah Jarak titik h ke bidang bdg diwakili Haki di mana HAKI adalah tegak lurus
Volumekubus = s x s x s = 12 x 12 x 12 = 1.728 cm ³ 2. Luas Permukaan Kubus Luas (L) = 6 x s x s = 6 x 12 x 12 = 864 cm ² 3. Keliling Kubus Keliling = 12 x s = 12 x 12 = 144 cm. Cara menghitung volume kubus :(silahkan masukan panjang rusuk lalu tekan hitung) 4. Menentukan Bagian-bagian Kubus
32 Kubus Abcd Efgh Mempunyai Panjang Rusuk 12 Cm Jarak Titik C Ke Bidang Bdg Adalah . Dan beliau ingin menanam 3 jenis tanaman yaitu j
Teksvideo. untuk mengerjakan soal seperti ini, maka pertama-tama kita gambar terlebih dahulu kubus abcd efgh seperti ini lalu pada soal diketahui panjang rusuk yaitu 18 cm ditanya jarak dari titik c terhadap bidang-bidang Ayah itu berarti yang ini maka untuk Jarak titik c ke bidang afh H kita proyeksikan titik c pada bidang maka jaraknya itu akan seperti ini yang garis merah ini maka untuk
Exemple De Message Site De Rencontre. SPMahasiswa/Alumni Universitas Pancasila24 Agustus 2022 0507Jawaban 7⅓ satuan volume. tidak ada di opsi Ingat! Volume kubus = s³ dimana s = panjang rusuk kubus Volume Limas = ⅓ × La × t dimana La = luas alas t = tinggi limas Sehingga, kubus dengan panjang rusuk = 2 satuan. CP PG = 1 3 CP = [1/1 + 3] × 2 CP = ¼ × 2 CP = ½ satuan. Limas segitiga siku-siku sama kaki dengan tinggi CP = ½ satuan, memiliki volume Volume Limas = ⅓ × La × t = ⅓ × ½ × BC × CD × CP = ⅓ × ½ × 2 × 2 × ½ = ⅓ satuan volume. Volume kubus = s³ = 2³ = 8 satuan volume. Sehingga sisa volume kubus = 8 – ⅓ = 7⅔ satuan volume. Jadi, selisih sisa volume kubus dengan volume limas = 7⅔ – ⅓ = 7⅓ satuan volume. Dengan demikian, bidang PBD membagi kubus menjadi dua bagian dengan selisih volume 7⅓ satuan volume tidak ada di opsi.Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
MatematikaGEOMETRI Kelas 12 SMADimensi TigaJarak Titik ke BidangDiketahui kubus dengan panjang rusuk 2 Jarak titik A dengan cm bidang BFHD adalah . . . .Jarak Titik ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0158Diketahui limas segi empat beraturan TABCD dengan panjang...0125Diketahui kubus dengan panjang rusuk 3 cm. Jara...0416Diketahui kubus dengan panjang rusuk 4 cm. Jika...0219Diketahui kubus dengan AB=6 cm. Jarak A ke bid...Teks videoUntuk mengerjakan soal ini kita lihat kubus abcd efgh dengan panjang rusuknya 2 kemudian kita diminta mencari jarak dari titik A ke bidang bfhd. Jadi kita garis tegak lurus dari a ke b d h f dari sebelah AC karena AC tegak lurus B sehingga jarak yang mau kita cari adalah jarak a. O itu adalah tengah AC dan AC adalah diagonal bidang AC adalah √ 2 yaitu 2 akar 2 A adalah setengah kali 2 akar 2 menjadi akar 2 cm dan ini adalah Opi B sampai jumpa di pertanyaan berikutnya
Perhatikan gambar pada kubus berikut ini. Dari informasi pada gambar dan menggunakan teorema Pythagoras, kita peroleh Berdasarkan informasi yang sudah kita peroleh diatas, segitiga DPQ adalah segitiga sama kaki, dengan ilustrasinya sebagai berikut. Dari gambar segitiga tersebut, kita gunakan teorema Pythagoras pada segitiga DSQ sehingga kita peroleh panjang Dengan demikian dengan menggunakan kesamaan luas segitiga DPQ, kita dapat peroleh panjang QR dengan perhitungan sebagai berikut. Oleh karena itu, panjang Jadi, jawaban yang tepat adalah A.
Kelas 12 SMADimensi TigaJarak Bidang ke BidangSebuah kubus memiliki panjang rusuk 2 cm. Titik P dan Q masing-masing terletak di tengah tengah AE dan CG. Tentukan jarak bidang PFH dan QBD !Jarak Bidang ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0116Diketahui sebuah balok dengan panjang 15 cm, le...0057Diketahui sebuah balok PORS. TUVW dengan panjang 15 cm, l...0146Pada kubus ABCD EFGH dengan panjang rusuk 4 cm, titik-tit...0413Persamaan garis singgung lingkaran x^2+y^2-4x-6y-3=0 yang...Teks videoDisini kita pakai soal tentang dimensi tiga jika menemukan soal seperti ini lihat dulu nih bentuk Apa yang diketahui pada soal diketahui pada soal adalah kubus abcd efgh seperti ini dikatakan memiliki panjang rusuk 2 cm kemudian Titik P dan Q masing-masing terletak di tengah-tengah ae dan CG tipe a di tengah-tengah ae ke sini ada P dan Q di tengah-tengah CG di sini yuk. Tentukan jarak bidang pfh dan q, b. Nah kita sambungkan dulu nih titik-titiknya pfh. Berarti nah ini PSHT sekarang kita gambar yang q b d untuk menentukan jarak antara dua bidang tangkap pertama adalah kita gambar bidang yang memotong tegak lurus di A dan q b bidang itu adalah bidang acg gambar Lalu kita garis kan Gimana sih si bidang acg ini memotong pfh dan q, b. Berarti untuk yang Tefa Dia memotong di sini kata garis ke situ Kemudian untuk yang q b d g Beti kata hari ke setelah itu jarak antara kedua bilangan itu adalah Jarak tegak lurus dari garis P F ke garis PV teman-teman dan kita nama ini titik tengah yang atas adalah x adalah y maka jaraknya adalah PX ke cuy caranya tarik tegak lurus yang ke warnain warna hitam ya tegak lurus kemudian kita sekarang keluarkan segitiga yang mengandung titik-titik tadi yaitu segitiga X chuuya tawarkan segitiga kira-kira kalau gitu kalau di dalam kubus Beti tinggal kita hubungkan nilai x dan y kemudian X dan Q Nonton Pasti nggak kalau PX yaitu adalah rusuk kubus dari kertas kubusnya 2 berarti aksi adalah 2 kemudian kalau kita lihat itu = XQ karena Q kan ada di tengah-tengah QC di belakang adalah pusat atas dan ia adalah pusat alas sehingga dia adalah segitiga sama kaki maka X Q = Q tapi kita belum tahu nih kayak mana cara mencarinya kita keluarkan segitiga-segitiga y c segitiga siku-siku siku-siku di c tegak lurus kakinya itu kan adalah setengah dari rusuk BC 1 AC adalah diagonal bidang tapi dibagi 2 untuk teman-teman yang belum tahu agar lebih mudah jika terdapat rusuk dengan besar cm pada kubus maka diagonal bidangnya adalah a √ 2 cm dan diagonal ruangnya adalah √ 3 cm sehingga karena itu adalah setengah dari rusuk S Tengah dari diagonal bidang arti D setengah dikali 2 akar 2 itu akar 2 dapatkan Q dengan phytagoras y kuadrat ditambah y kuadrat berarti 2 ditambah 1 artinya ya Q = √ 3 cm. Setelah dapat giginya berarti kita tulis di sini x akar 3 dan kakinya pun akar 3 kalau kita misalkan titik ini Ada titik n s sini ya nanti kamu mencari XN ini. Berapa ini adalah jarak didalamnya langkah berikutnya adalah kita cari X M dengan menggunakan phytagoras baik dari segi tiga siku-siku yang kiri maupun yang kanan berarti kau dan segitiga yang sebelah kiri x kuadrat dikurang g n kuadrat X dari segitiga yang kanan x kuadrat dikurang Q kuadrat berarti 4 dikurang a kuadrat = 3 min Kenapa ini adalah a ini berarti akar 3 min ini kita bisa kan tadi ya akar 3 min a kuadrat Halo ini kalau kita pindahkan jadi 1 Min a kuadrat = min 3 min 2 akar 3 cos a kuadrat sehingga B Min a kuadrat = min 3 + 2 akar 3 dan a kuadrat kita pindahkan ruasnya matriks 1 min 3 + 2 a √ 3 sehingga 4 = 2 √ 3 √ 3 = 2 = 2 per akar 3 cm karena kita mau cari adalah x n nya jadi kita keluarkan segitiga hanya yang XL aja kita hapus dulu segitiga y aksen atau ini aku tebelin G tegak lurus Tadi hanya adalah 2 per akar 3 Sisinya adalah 2 maka F aksen kuadrat = X min Sin kuadrat x kuadrat adalah 4 dikurang 4 per 3 = 8 per 3 maka F aksen = 2 akar 2 per akar 3 Jangan lupa kita rasionalkan akar 3 ya teman-teman lainnya menjadi x akar 3 per akar 3 atau 2 akar 6 per 3 adalah jawabannya sampai jumpa pada soal yang lainnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Kelas 12 SMADimensi TigaJarak Titik ke BidangDiketahui sebuah kubus memiliki panjang rusuk 21 cm. Jarak titik F ke BEG adalah....cmJarak Titik ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0158Diketahui limas segi empat beraturan TABCD dengan panjang...0125Diketahui kubus dengan panjang rusuk 3 cm. Jara...0416Diketahui kubus dengan panjang rusuk 4 cm. Jika...0219Diketahui kubus dengan AB=6 cm. Jarak A ke bid...Teks videoHalo friends, besok ini Diketahui sebuah kubus abcd efgh memiliki panjang rusuk 21 cm kemudian Jarak titik f ke bidang bdg adalah untuk menentukan jarak dari titik f ke beg pertama yang harus kita lakukan adalah menggambar bidang bdg terlebih dahulu kemudian kita tahu bahwa Jarak titik f ke bidang itu haruslah siku-siku sehingga disini kita tentukan terlebih dahulu bidang yang memotong bidang bdg dan suatu bidang yang memotong bidang dan melalui titik f yaitu bidangnya adalah bidang bdhf dimana kedua bidang tersebut memotong di garis yang ini ya Nah kita misalkan ini adalah titik OSehingga jarak dari titik f ke beg berarti di sini kita hubungkan dari f ke garis b. O di mana siku-siku di sini ya siku-siku di garis kita misalkan ini adalah titik pertama kita perhatikan segitiga di sini Kita tentukan panjang BD terlebih dahulu diketahui panjang AB nya 2121 apa untuk menekan PD kita bisa menggunakan konsep pythagoras yang mana ketika sisi terpanjang dikuadratkan maka akan sama dengan jumlah kuadrat Sisi penyikunya yaitu a + b kuadrat jika di sini untuk dedeknya = akar kuadrat kita pindahkan jadi akar adanya 21 kuadrat ditambah 21 kuadrat sama saja dengan 21 kuadrat dikali kan dengan 221 kuadrat yang akar kan menjadi 21 kemudian akar 2 akan menjadi akar 2 sehingga panjang BD nya adalah 2Akar 23 jika kita Gambarkan bidang BDF hanya bdhf nya yang di dalam sini di mana bedanya tadi sudah kita dapatkan yaitu 21 akar 2 GR jatuh di sini ketahui rusuknya 21 berarti setengahnya di sini kan itu setengah dari HF berarti 21 akar 2 dibagi 2 A seperti ini panjang OS Kemudian untuk menentukan panjang vst kita perlu mencari panjang b. O terlebih dahulu Nah di sini kan segitiga siku-siku Ya gimana siku-siku di f b f o berarti disini untuk menentukan bego berarti kita gunakan konsep pythagoras kuadrat = x kuadrat ditambah dengan b s kuadrat maka beonya = akar Nah di sini lo nya adalah 21 per 2 akar 2 dikuadratkan kemudianDengan 21 kuadrat nah Makkah ini √ 2 dikuadratkan menjadi 2 kemudian 2 penyebut dikuadratkan menjadi 4 maka 2 dibagi 44 dibagi menjadi dua 1 kuadrat 441 per 2 ya sudah kita bagi dengan √ 2 dikuadratkan makalah ditambah dengan 21 kuadrat itu 404 kemudian kita agar kan Nah disini kita samakan penyebutnya Wah berarti di sini 41 dikali 2 menjadi 882. Jika jumlah menjadi 1323 per 2 maka kita sedang kita akan menjadi 21 akar 3 per akar 2 Nah dari sini kita rasionalkan ya kita kalikan akar 2 per akar 2 k menjadi 21 akar 6 per 2Kemudian untuk menentukan panjang EF kita gunakan rumus luas segitiga yaitu luas segitiga yang pertama sama dengan luas segitiga yang kedua luas segitiga segitiga yang pertama kita gunakan alasnya yaitu beo dan tingginya adalah SP rumus luas segitiga setengah dikali alas kali tinggi juga sama setengah * alas * tinggi sehingga dia menjadi setengah dikalikan dengan alas nya yaitu 21 per 2 akar 6 tingginya adalah F kemudian yang satunya setengah dengan alas nya itu yang Evo dan tingginya adalah BF ya ini tinggi Nah berarti di sini alasnya 21 per 2 akar 2 dikalikan dengan 21 nah kedua ruas kita kalikan 2 berarti ini kita coret kemudian keluar juga 21/21 atau dua-duanya kita nggakini juga bisa kita coret Nah jadi √ 6 * F P = akar 2 dikali 21 sehingga FP = 21 √ 22 karena kita pindahkan ke ruas kanan menjadi 3 bagian kemudian kita rasionalkan kita kalikan dengan √ 6 √ 6 maka a = 21 akar 12 per 6 akar 12 itu kan sama saja dengan 2 akar 34 dikali 3 akar 42 akar 3 dibagi dengan 6 nah 21 * 2042 √ 36 / 42 dibagi 6 / 7 akar 3Sehingga jarak titik f ke bidang bdg adalah 7 akar 3 cm, maka jawaban yang benar adalah yang c. Oke sekian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
kubus abcd efgh mempunyai panjang rusuk 2 satuan